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Abstract. Integer programming problems with a concave cost function are often encoun-
tered in optimization models involving economics of scale. In this paper, we propose an effi-
cient exact algorithm for solving concave knapsack problems. The algorithm consists of an
iterative process between finding lower and upper bounds by linearly underestimating the
objective function and performing domain cut and partition by exploring the special struc-
ture of the problem. The lower bound is improved iteratively via cutting and partitioning the
domain. This iteration process converges to the optimality in a finite number of steps. Prom-
ising computational results are reported for large-scale concave knapsack problems with up
to 1200 integer variables. Comparison results with other existing methods in the literature
are also presented.

Key words: concave knapsack problem, domain cut, domain partition, linear underestimation,
nonlinear integer programming.

1. Introduction

Consider the following concave knapsack problem:

(P) min f (x)=
n∑

j=1

fj (xj ), (1)

s.t. g(x)=
n∑

j=1

bjxj � b,

x ∈X ={x | lj � xj � uj , xj integer, j =1, . . . , n},

where fj , j = 1, . . . , n, are nonincreasing concave functions on R, bj > 0,
j = 1, . . . , n, and lj and uj are integer lower and upper bounds of xj . Set
X is termed the domain of the decision variables.
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79970107 and 10271073, and the Research Grants Council of Hong Kong under Grant CUHK
4214/01E.
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Nonlinear separable integer programming has received considerable atten-
tion during the last 30 years. Most of the research efforts have been
devoted to convex separable integer programming problems where fj ’s
are convex functions. Branch-and-bound methods and their combination
with dynamic programming were proposed for nonlinear resource alloca-
tion problems [5–7,15,25] and convex nonlinear knapsack problems [11,
18,19]. Hochbaum [12] proposed a 0–1 linearization method to convert
a convex nonlinear knapsack problem into an equivalent 0–1 linear inte-
ger program. Pardalos and Rosen [23] proposed a linearizarion method to
reduce a general separable integer programming problem into a linear 0–1
problem. Marsten and Morin [16], Morin and Marsten [20,21] presented
dynamic programming methods for nonlinear separable integer program-
ming problems (see [9] and the references therein for the use of dynamic
programming methods in nonlinear integer programming). Solution meth-
ods for nonlinear integer knapsack problems with a special form of con-
straint:

∑n
j=1 xj =b are summarized in Ibaraki and Katoh’s book [14]. An

O(n) algorithm was proposed by Pardalos and Kovoor [22] for the contin-
uous optimization problem of minimizing a convex quadratic function sub-
ject to

∑n
j=1 xj =b and 0 � xj � βj , j =1, . . . , n.

In real-world applications, however, nonconvex objective functions are
often encountered in nonlinear integer programming models. The concave
cost function is of particular interests due to its applications in prob-
lems involving economics of scale [24], capacity planning and fixed-charge
problems with integer variables [5,13]. The hybrid dynamic programming
method developed in [16] can deal with nonconvex integer programming
problems. The method generates efficient feasible solutions recursively and
uses lower bounds in the course of the recursion to fathom efficient solu-
tions that are unable to lead to an optimal solution. The method needs
to store all the unfathomed efficient solutions during the algorithm and
will cause storage problem as the dimension n increases. Moveover, in [16],
the lower bound is obtained via converting a residual subproblem into
a 0–1 linear programming and then solving its continuous relaxation by
dual simplex methods. In nonlinear cases, this solution method introduces
many extra variables. Numerical results were reported in [16] only for 0–
1 linear integer programming problems. A conventional branch-and-bound
method combined with a linear underestimation strategy was suggested in
[5] for solving concave resource allocation problems, while no computa-
tional results were reported. Branch-and-bound algorithms based on the
global optimization methods for concave minimization were proposed in
[2–4,8] for solving concave integer programming problems over a polyhe-
dron. Since solution methods for concave minimization are based on outer
approximation and vertex ranking of a polyhedron, branch-and-bound
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methods using direct continuous relaxation can be only applicable to solve
small size problems.

This paper aims to develop a new exact method for problem (P). The
basic idea underlying the proposed algorithm is adopting lower bound-
ing by linear approximation and revising the domain of the decision vari-
ables by cutting and partitioning. Approximating the concave function fj ’s
by its convex underestimation leads to a linear knapsack subproblem. The
continuous optimal solution of the linear knapsack subproblem can be
obtained by a simple greedy procedure. It is shown that the resulting lower
bound coincides with the optimal Lagrangian dual value of the subprob-
lem. To improve the lower bound, certain integer points are cut from the
domain. Due to the special property of the problem, it is proved that an
integer box after a cut can be partitioned into a union of at most n − 1
smaller integer boxes. For each integer box included in a revised domain, a
lower bound and an upper bound are obtained. All the integer boxes with
the lower bound greater than or equal to the incumbent will be fathomed.
The algorithm generates a sequence of strictly increasing lower bounds of
the problem (P) and terminates when there is no active integer box. Com-
putational results show that the algorithm is capable of solving large-scale
concave knapsack problems with up to 1200 integer variables in reason-
able computation time. The efficiency of the algorithm is also confirmed by
comparing it with other existing methods in the literature.

2. Linear Approximation and Bounding

Let α, β ∈Z
n, where Z

n denotes the set of integer points in R
n. Denote by

[α,β] the box (hyper-rectangle) formed by α and β, [α,β] ={x |αj � xj �
βj , j =1, . . . , n}. Denote by 〈α,β〉 the set of integer points in [α,β],

〈α,β〉={x |αj � xj � βj , xj integer, j =1, . . . , n}=
n∏

j=1

〈αj , βj 〉.

The set 〈α,β〉 is called an integer box. For convenience, we define [α,β]=
〈α,β〉=∅ if α ��β

Let 〈α,β〉⊆X = {x | lj � xj � uj , xj integer, j =1, . . . , n} be a nonempty
integer box. Consider the following subproblem of (P):

(SP) min f (x) =
n∑

j=1

fj (xj ),

s.t. g(x) =
n∑

j=1

bjxj � b, x ∈〈α,β〉.
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Denote by v(·) the optimal value of problem (·). The convex underestimat-
ing function of f (x)=∑n

j=1 fj (xj ) over box [α,β] can be expressed as:

L(x)=
n∑

j=1

Lj(xj ),

where Lj(xj )=fj (αj )−aj (xj −αj ) with

aj =
{

−fj (βj )−fj (αj )

βj −αj
, αj <βj ,

0, αj =βj .

The linear approximation of (SP ) is

(LSP) min L(x)=a0 −
n∑

j=1

ajxj ,

s.t. g(x)=
n∑

j=1

bjxj � b, x ∈〈α,β〉,

where a0 =∑n
j=1[fj (αj ) + ajαj ] is the constant term of L(x). Since fj ,

j =1, . . . , n, are nonincreasing functions, we have aj � 0 for j = 1, . . . , n.
Without loss of generality, we assume that

a1

b1
� a2

b2
� . . . � an

bn

.

Let

ξj =
⎛

⎝b−
j−1∑

i=1

biβi −
n∑

i=j+1

biαi

⎞

⎠ /bj , j =1, . . . , n. (2)

Let k be the largest index j satisfying ξj >αj . It is well known from [10]
that the optimal solution of the continuous relaxation of (LSP) is

xR = (β1, . . . , βk−1, ξk, αk+1, . . . , αn)
T . (3)

Let τk =�ξk	, where �ξk	 denote the maximum integer equal to or less than
ξk. A feasible solution can be derived from xR by replacing ξk with τk

xF = (β1, . . . , βk−1, τk, αk+1, . . . , αn)
T . (4)
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From (2) and (4), we infer that if ξk = τk, then xF =xR is an optimal solu-
tion to (LSP). Suppose that ξk �= τk. Let

xI = (β1, β2, . . . , βk−1, τk +1, αk+1, . . . , αn)
T . (5)

It follows that xI ∈〈α,β〉 and xI is infeasible. Let (RLSP) denote the con-
tinuous relaxation problem of (LSP). Then, from the above discussion, we
have

L(xR)=v(RLSP ) � v(LSP ) � v(SP ) � f (xF ).

Therefore, by solving (RLSP ), we can get a lower bound L(xR) and an
upper bound f (xF ) of the subproblem (SP).

It is interesting to compare L(xR) with the lower bound provided by
Lagrangian dual problem of (SP). The Lagrangian dual problem of (SP) is

(SD) max
λ�0

d(λ),

where d(λ) is the dual function defined by

d(λ)= min
x∈〈α,β〉

l(x, λ)=f (x)+λ

⎛

⎝
n∑

j=1

bjxj −b

⎞

⎠ . (6)

The following theorem shows that L(xR) coincides with the optimal
Lagrangian dual value of problem (SP).

THEOREM 1. v(SD)=v(RLSP )=L(xR).
Proof. Since f (x) is concave, the Lagrangian function l(x, λ) in (6) is a

concave function of x for any λ � 0. Thus, it always achieves its minimum
over [α,β] at one of its extreme points, which are in 〈α,β〉. On the other
hand, f (x) takes the same values as L(x) over all the extreme points of
box [α,β]. Therefore, we have

v(SD)=max
λ�0

d(λ)

=max
λ�0

min
x∈〈α,β〉

f (x)+λ

⎛

⎝
n∑

j=1

bjxj −b

⎞

⎠

=max
λ�0

min
x∈[α,β]

L(x)+λ

⎛

⎝
n∑

j=1

bjxj −b

⎞

⎠

= min
x∈[α,β]

max
λ�0

L(x)+λ

⎛

⎝
n∑

j=1

bjxj −b

⎞

⎠
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=min

⎧
⎨

⎩L(x) |
n∑

j=1

bjxj � b, x ∈ [α,β]

⎫
⎬

⎭=v(RLSP )=L(xR).

The fourth equality is due to the duality theorem of linear programming.

3. Partition and the Solution Method

The key idea underlying the proposed method is to remove from X certain
integer boxes that for sure do not include optimal solution of (P) and then
partition the revised domain into a union of integer boxes. Let A=〈α,β〉,
BF = 〈α, xF 〉 and BI = 〈xI , β〉. By the monotonicity of f (x), cutting inte-
ger box BF from A does not remove any feasible solution better than xF .
Moreover, cutting integer box BI does not remove any feasible solution
from A. Let � = (A\BF )\BI . We will show in the following that � can
be partitioned into a union of at most n−1 integer boxes. A lower bound
and an upper bound on � can be then calculated by applying the linear
approximation approach proposed in the previous section to each integer
box.

LEMMA 1. Let A=〈α,β〉 and B =〈γ, δ〉, where α, β, γ , δ ∈ Z
n and α �

γ � δ � β. Then

A\B =
⎧
⎨

⎩

n⋃

j=1

⎛

⎝
j−1∏

i=1

〈αi, δi〉×〈δj +1, βj 〉×
n∏

i=j+1

〈αi, βi〉
⎞

⎠

⎫
⎬

⎭

⋃
⎧
⎨

⎩

n⋃

j=1

⎛

⎝
j−1∏

i=1

〈γi, δi〉×〈αj , γj −1〉×
n∏

i=j+1

〈αi, δi〉
⎞

⎠

⎫
⎬

⎭ . (7)

Proof. As illustrated in Figure 1, A\B can be expressed as

A\B =〈α,β〉\〈γ, δ〉= (〈α,β〉\〈α, δ〉)
⋃

(〈α, δ〉\〈γ, δ〉). (8)

Let C =〈α, δ〉. Then, by (8),

A\B = (A\C)
⋃

(C\B). (9)

For j =0,1, . . . , n−1, define

Aj =
n∏

i=j+1

〈αi, βi〉, Cj =
n∏

i=j+1

〈αi, δi〉.

Then
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α

β

γ

δ

Figure 1. Partition of set A\B.

Aj−1\Cj−1

=
n∏

i=j

〈αi, βi〉\
n∏

i=j

〈αi, δi〉

=
⎧
⎨

⎩(〈αj , δj 〉×
n∏

i=j+1

〈αi, βi〉)
⋃

(〈δj +1, βj 〉×
n∏

i=j+1

〈αi, βi〉)
⎫
⎬

⎭\
n∏

i=j

〈αi, δi〉

=
⎧
⎨

⎩(〈αj , δj 〉×
n∏

i=j+1

〈αi, βi〉)\
n∏

i=j

〈αi, δi〉
⎫
⎬

⎭
⋃

(〈δj +1, βj 〉×
n∏

i=j+1

〈αi, βi〉)

=
⎧
⎨

⎩〈αj , δj 〉× (

n∏

i=j+1

〈αi, βi〉\
n∏

i=j+1

〈αi, δi〉)
⎫
⎬

⎭
⋃

(〈δj +1, βj 〉×
n∏

i=j+1

〈αi, βi〉)

={〈αj , δj 〉× (Aj\Cj

)}⋃
⎛

⎝〈δj +1, βj 〉×
n∏

i=j+1

〈αi, βi〉
⎞

⎠ . (10)

Notice that A = A0, C = C0, An−1 \Cn−1 = 〈αn,βn〉\〈αn, δn〉 = 〈δn + 1, βn〉.
Using the partition formulation (10) recursively for j =1, . . . , n−1, we get

A\C =
n⋃

j=1

⎛

⎝
j−1∏

i=1

〈αi, δi〉×〈δj +1, βj 〉×
n∏

i=j+1

〈αi, βi〉
⎞

⎠ . (11)
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Similarly, we have

C\B =
n⋃

j=1

⎛

⎝
j−1∏

i=1

〈γi, δi〉×〈αj , γj −1〉×
n∏

i=j+1

〈αi, δi〉
⎞

⎠ . (12)

Combining (9) with (11) and (12) yields (7).

Now, consider the partition of set � = (A\BF )\BI , where BF = 〈α, xF 〉
and BI =〈xI , β〉 with xF and xI defined by (4) and (5), respectively. Since
xF and xI are on the boundary of the box A=〈α,β〉, we are able to par-
tition � into at most n−1 subboxes as stated in the following corollary.

COROLLARY 1. The set �= (A\BF )\BI can be partitioned into at most
n−1 integer boxes

�=
⎧
⎨

⎩

k−1⋃

j=1

⎛

⎝
j−1∏

i=1

〈βi, βi〉×〈αj , βj −1〉×
k−1∏

i=j+1

〈αi, βi〉

×〈τk +1, βk〉×
n∏

i=k+1

〈αi, βi〉
)}

⋃
⎧
⎨

⎩

n⋃

j=k+1

(
k−1∏

i=1

〈αi, βi〉×〈αk, τk〉

×
j−1∏

i=k+1

〈αi, αi〉×〈αj +1, βj 〉×
n∏

i=j+1

〈αi, βi〉
⎞

⎠

⎫
⎬

⎭ . (13)

Proof. By (7), we have

A\BF =
{

k−1∏

i=1

〈αi, βi〉 ×〈τk +1, βk〉

×
n∏

i=k+1

〈αi, βi〉
}
⋃
⎧
⎨

⎩

n⋃

j=k+1

(
k−1∏

i=1

〈αi, βi〉 ×〈αk, τk〉

×
j−1∏

i=k+1

〈αi, αi〉×〈αj +1, βj 〉×
n∏

i=j+1

〈αi, βi〉
⎞

⎠

⎫
⎬

⎭ .

It is easy to see that only the first integer box of the above union of n−
k +1 integer boxes contains xI . Thus,
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(A\BF )\BI =
{

k−1∏

i=1

〈αi, βi〉×〈τk +1, βk〉

×
n∏

i=k+1

〈αi, βi〉
}

\
{

k−1∏

i=1

〈βi, βi〉×〈τk +1, βk〉

×
n∏

i=k+1

〈αi, βi〉
}
⋃
⎧
⎨

⎩

n⋃

j=k+1

(
k−1∏

i=1

〈αi, βi〉×〈αk, τk〉

×
j−1∏

i=k+1

〈αi, αi〉×〈αj +1, βj 〉×
n∏

i=j+1

〈αi, βi〉
⎞

⎠

⎫
⎬

⎭ .

Using (7) again, we obtain (13).

We now describe the algorithm.

ALGORITHM 1.
Step 0 (Initialization). Let l = (l1, . . . , ln)

T , u= (u1, . . . , un)
T . If l is infeasible

then problem (P) has no feasible solution, stop. Otherwise, set
xbest = l, fbest =f (xbest ), X1 =〈l, u〉, Y 1 =X1, Zk =∅. Set k =1.

Step 1 (Linear approximation). For each 〈α,β〉∈Y k, do the following:

(i) If g(α)>b, then remove 〈α,β〉 from Y k.
(ii) Compute the linear approximation function L(x). For con-

venience, suppose {aj/bj }nj=1 is already in decreasing order.
Calculate the continuous optimal solution xR by (3).

(a) If L(xR) � fbest, then remove 〈α,β〉 from Y k and repeat Step 1;
(b) If ξk = τk, then xF = xR is an optimal solution to the cor-

responding subproblem (LSP). If f (xF ) < fbest set fbest =
f (xF ) and xbest = xF , remove 〈α,β〉 from Y k. Otherwise,
goto (iii).

(iii) Calculate xF and xI by (4) and (5), respectively. Determine τj

for j =k +1, . . . , n by

τj =min

⎧
⎨

⎩βj ,

⎢⎢⎢⎣

⎛

⎝b−
k−1∑

i=1

biβi −
j−1∑

i=k

biτi −
n∑

i=j+1

biαi

⎞

⎠ /bj

⎥⎥⎥⎦

⎫
⎬

⎭ .

(14)

Let

x̄F = (β1, β2, . . . , βk−1, τk, τk+1, . . . , τn)
T . (15)

If f (x̄F )<fbest set fbest =f (x̄F ) and xbest = x̄F .
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Step 2 (Fathoming). For each 〈α,β〉, denote by r(α,β) the lower bound
L(xR), the optimal value of (RLSP) on 〈α,β〉. Let T k = Y k

⋃
Zk.

For each 〈α,β〉∈T k, remove 〈α,β〉 from T k if r(α,β) � fbest.
Step 3 (Partition). If T k = ∅, stop, xbest is an optimal solution to (P).

Otherwise, find the integer box 〈α,β〉 with minimum value of
r(α,β):

fk = r(α,β)= min
〈α̃,β̃〉∈T k

r(α̃, β̃).

Set Zk+1 =T k\{〈α,β〉} and

Y k+1 = (〈α,β〉\〈α, xF 〉)\〈xI , β〉,

where xF and xI were calculated in Step 1 (iii). Partition Y k+1

into a union of integer boxes by using the formula (13). Set Xk+1

=Y k+1⋃Zk+1, k :=k +1, goto Step 1.

A few remarks about the algorithm are as follows.

Remark 1. In Step 1 (ii), the necessary ranking of {aj/bj }nj=1 and the
corresponding variable re-ordering of x can be easily done in general cases
when {aj/bj }nj=1 is not in decreasing order.

Remark 2. Calculating x̄F in Step 1 (iii) is to improve the feasible solu-
tion xF by filling the slack of constraint at xF . Since xF is feasible, it fol-
lows that x̄F is also feasible and f (x̄F ) � f (xF ). Similar heuristics have
been used in generating feasible solutions for linear knapsack problems (see
[17]).

Remark 3. In the algorithm, Xk =Y k
⋃

Zk represents all the active inte-
ger boxes, where Y k is the set of newly generated integer boxes on each
of which a lower bound and an upper bound have been calculated in Step
1, and Zk is the set of old integer boxes inherited from Xk−1. Each inte-
ger box in Xk is associated with a lower bound L(xR), a feasible solution
xF and an infeasible solution xI . The incumbent xbest and the correspond-
ing best function value fbest are obtained by comparing the last incumbent
with the minimum of upper bounds, xF or x̄F , on the integer boxes in Y k.

THEOREM 2. The algorithm generates a nondecreasing sequence of lower
bounds {fk} and terminates at an optimal solution of (P ) within a finite num-
ber of iterations.
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Proof. For each integer box 〈α,β〉 of Xk+1 = Y k+1⋃Zk+1, it is either
identical to an integer box in Xk or a subset of an integer box in Xk. Thus,
the linear underestimation of f (x) on 〈α,β〉 majorizes that on the corre-
sponding integer box of Xk. Moreover, from Step 3, the continuous opti-
mal solution xR corresponding to the minimum lower bound fk is excluded
in Xk+1. Therefore, fk+1 � fk for k � 1. The finite termination of the algo-
rithm is obvious from the finiteness of X and the fact that at least the fea-
sible solution xF and infeasible solution xI corresponding to the minimum
lower bound fk are cut from Xk and excluded in Xk+1. Since the fathoming
process in Steps 1 and 2 and the domain cutting process in Step 3 do not
remove from Xk any feasible solution better than xbest, the feasible solution
xbest must be an optimal solution to (P) when the algorithm stops at Step
3 with no integer boxes left in T k.

To illustrate the algorithm, let us consider a small-size numerical exam-
ple:

EXAMPLE 1

min f (x)= −5x2
1 −15x1 −4x2

2 −6x2 −2x2
3 −4x3 −x2

4 −9x4

−2x2
5 −18x5,

s.t. g(x)= 7x1 +x2 +5x3 +4x4 +2x5 � 47.5,

x ∈X ={x |0 � xj � 5, xj integer, j =1,2,3,4,5}.

The optimal solution of this problem is x∗ = (4,5,0,1,5)T with f (x∗) =
−420.

Applying Algorithm 1 to this example, it terminates at the 4th iteration
with the optimal solution x∗ after generating 10 integer subboxes. The fol-
lowing detailed description gives the iterative solution process.
Initial Iteration

Step 0. Set l = (0,0,0,0,0)T , u= (5,5,5,5,5)T , X1 ={〈l, u〉}, Y 1 =X1, Z1 =
∅, xbest = (0,0,0,0,0)T , fbest =0, k =1.

Iteration 1
Step 1. For box 〈l, u〉, we have

xR = (4.64,5,0,0,5)T , L(xR)=−445.71, xF = (4,5,0,0,5)T ,

xI = (5,5,0,0,5)T , x̄F = (4,5,0,1,5)T ,

xbest = x̄F = (4,5,0,1,5)T , fbest =−420.

Step 2. T 1 ={〈l, u〉}.
Step 3. Integer box 〈l, u〉 is chosen to partition. Z2 =∅. Using (13),
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Y 2 = (〈l, u〉\〈(0,0,0,0,0)T , (4,5,0,0,5)T 〉)\〈(5,5,0,0,5)T ,

(5,5,5,5,5)T 〉
is partitioned into 4 integer subboxes:

Y 2
1 =〈(0,0,1,0,0)T , (4,5,5,5,5)T 〉, Y 2

2 =〈(0,0,0,1,0)T , (4,5,0,5,5)T 〉,
Y 2

3 =〈(5,0,0,0,0)T , (5,4,5,5,5)T 〉, Y 2
4 =〈(5,5,0,0,0)T , (5,5,5,5,4)T 〉.

Thus, X2 =Y 2⋃Z2 ={Y 2
1 , Y 2

2 , Y 2
3 , Y 2

4

}
. Set k =2, goto Step 1.

Iteration 2

Step 1. (1) For box Y 2
1 , we have xR = (3.93,5,1,0,5)T , L(xR) = −413.52

>fbest, remove Y 2
1 from Y 2.

(2) For box Y 2
2 , we have xR = (4,5,0,1.13,5)T , L(xR) = −421.87

<fbest, xF = (4,5,0,1,5)T , xI = (4,5,0,2,5)T , x̄F =xF .
(3) For box Y 2

3 , we have xR = (5,4,0,0,4.25)T , L(xR) = −407
>fbest, remove Y 2

3 from Y 2.
(4) For box Y 2

4 , we have xR = (5,5,0,0,3.75)T , L(xR) = −427.5
<fbest, xF = (5,5,0,0,3)T , xI = (5,5,0,0,4)T , x̄F =xF .

Step 2. T 2 ={Y 2
2 , Y 2

4 }.
Step 3. Integer box Y 2

4 is chosen to partition. Z3 ={Y 2
2 }. Using (13),

Y 3 = (Y 2
4 \〈(5,5,0,0,0)T , (5,5,0,0,3)T 〉)\〈(5,5,0,0,4)T , (5,5,5,5,4)T 〉

is partitioned into 2 integer subboxes

Y 3
1 =〈(5,5,1,0,0)T , (5,5,5,5,4)T 〉, Y 3

2 =〈(5,5,0,1,0)T , (5,5,0,5,4)T 〉.
Thus, X3 =Y 3⋃Z3 ={Y 2

2 , Y 3
1 , Y 3

2 }. Set k =3, goto Step 1.

Iteration 3

Step 1. (1) For Y 3
1 , we have xR = (5,5,1,0,1.25)T , L(xR)=−368.5>fbest,

remove Y 3
1 from Y 3.

(2) For Y 3
2 , we have xR = (5,5,0,1,1.75)T , L(xR)=−385.5 >fbest,

remove Y 3
2 from Y 3.

Step 2. T 3 ={Y 2
2 }.

Step 3. Integer box Y 2
2 is chosen to partition. Z4 =∅. Using (13),

Y 4 = (Y 2
2 \〈(0,0,0,1,0)T , (4,5,0,1,5)T 〉)\〈(4,5,0,2,5)T ,

(4,5,0,5,5)T 〉
is partitioned into 3 integer subboxes

Y 4
1 =〈(0,0,0,2,0)T , (3,5,0,5,5)T 〉,

Y 4
2 =〈(4,5,0,2,0)T , (4,5,0,5,4)T 〉,

Y 4
3 =〈(4,0,0,2,0)T , (4,4,0,5,5)T 〉.
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Thus, X4 =Y 4⋃Z4 ={Y 4
1 , Y 4

2 , Y 4
3 }. Set k =4, goto Step 1.

Iteration 4

Step 1. (1) For Y 4
1 , we have xR = (3,5,0,2.87,5)T , L(xR) = −396 > fbest,

remove Y 4
1 from Y 4.

(2) For Y 4
2 , we have xR = (4,5,0,2,3.25)T , L(xR)=−376.5>fbest,

remove Y 4
2 from Y 4.

(3) For Y 4
3 , we have xR = (4,4,0,2,3.75)T , L(xR) = −355 > fbest,

remove Y 4
3 from Y 4.

Step 2. T 4 =∅.
Step 3. Stop, xbest = (4,5,0,1,5)T is the optimal solution.

4. Computational Results

Algorithm 1 has been coded by Fortran 90 and has run on a Sun Blade
1000 workstation. The test problems in our computational experiment are
of the following form:

min f (x)=
n∑

j=1

(−cjx
3
j −djx

2
j − ejxj ),

s.t. g(x)=
n∑

j=1

bjxj � b,

x ∈X ={x | lj � xj � uj , xj integer, j =1, . . . , n},

where cj , dj , ej and bj are positive real number. The problem size n in our
testing ranges from 200 to 1200. For each n, 20 test problems are randomly
generated by a uniform distribution with cj ∈ [0,1], dj ∈ [1,10], ej ∈ [1,20],
and bj ∈ [1,40]. In all the test problems, lj = 1, uj = 5 and b =∑n

j=1 bj lj +
0.5(

∑n
j=1 bj (uj − lj )). Table 1 summarizes the numerical results, where min,

max and avg stand for minimum, maximum and average, respectively.
From Table 1, we can see that the proposed linear approximation and

partition method can find exact optimal solutions of large-scale concave
knapsack problems with up to 1200 integer variables in reasonable compu-
tation time.

We have compared the performance of Algorithm 1 with two other
existing methods in the literature which are applicable to nonconvex inte-
ger programming problems: dynamic programming method [1] and the
hybrid method of Marstern and Morin [16]. Due to the separability of
the objective and constraint functions, dynamic programming can be used
to search for the optimal solution. Since an efficient implementation of
the dynamic programming recursion requires that the coefficients bj ’s be
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Table 1. Numerical results of Algorithm 1

Number of iterations Number of subboxes CPU seconds

n Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

200 6 117 52 889 12871 5453 0.7 8.9 3.8
400 4 237 64 612 39476 13841 1.1 64.3 23.6
800 2 589 200 800 247477 87743 5.4 1183.6 420.6
1200 11 436 211 9513 320784 133755 105.5 3158.1 1220.0

Table 2. Comparison results with dynamic programming method

Average CPU seconds

n Algorithm 1 Dynamic programming

200 3.7 23.2
400 24.9 140.0
600 83.6 451.7
800 273.8 975.3

positive integers, bj ’s in the test problems are random integers from [1,10].
The comparison results are reported in Table 2 where the average CPU
seconds are obtained by running 20 test problems for each n. The hybrid
method of Marstern and Morin [16] is a combination of dynamic pro-
gramming approach with dominance rules and branch-and-bound method.
The basic idea of the method is to recursively generate the efficient feasi-
ble solutions of the problem and remove the inefficient feasible solutions by
dominance rules. Branch-and-bound strategy is employed to remove incom-
plete solutions during the recursion. The comparison results are reported
in Table 3 where the average CPU seconds are obtained by running 20 test
problems for each n.

From Tables 2 and 3, it is clear that the proposed linearization and
domain cut method significantly outperforms the dynamic programming
method and the hybrid method of Marstern and Morin in terms of average
CPU time.

Table 3. Comparison results with hybrid method

Average CPU seconds

n Algorithm 1 Hybird Method

50 0.11 2.8
100 0.53 39.1
150 1.6 173.0
200 3.8 546.3
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5. Concluding Remarks

We have proposed a new exact method for nonlinear concave integer knap-
sack problems. The method combines the linear approximation with a
new domain cut strategy. The robustness and efficiency of the proposed
algorithm have been witnessed from test problems of a size up to 1200
variables. Favorable comparison results with other existing methods in lit-
erature have also been observed. The proposed algorithm can be viewed as
a special branch-and-bound method where the lower bound at each node
coincides with the Lagrangian dual bound of the subproblem. In contrast
to the branching rule in the conventional branch-and-bound procedure for
integer programming where two new subproblems are generated at each
node and one of them is selected to solve next, the proposed algorithm
generates and evaluates at most n new nodes simultaneously at each level
of the search tree, and the node fathoming is done for all nodes at the
same level. By doing so, it is expected that better feasible solutions can be
found in an early stage and at the same time more nodes can be removed
from the search tree. Finally, we point out the proposed method can be
extended to handle multiple constraints by using a surrogate constraint
technique.
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